洪丹枫,中国科学院空天信息创新研究院,研究员,博导,首届国家优秀青年基金(海外)项目获得者,遥感与数字地球中国科学院重点实验室副主任。研究方向为多模态遥感大数据、人工智能,重点开展生成式ai成像、可解释性ai、遥感基础大模型、多模态智能解译、目标检测/识别等方面研究。先后主持科技部国家重点研发项目课题、国家自然科学基金委员会重点专项基金项目课题、国家自然科学基金委员会面上项目等。在国内外学术期刊发表学术论文180余篇,其中sci期刊论文130余篇(包含17篇esi热点论文和36篇esi高被引论文),google scholar引用8400余次,参与出版英文专著2部,获得ieee tgrs、ieee jstars 最佳审稿人奖、国际高光谱顶级会议whispers杰出论文奖(jose bioucas dias奖)、入选全球前2%顶尖科学家榜单、国家优秀自费留学生奖学金、remote sensing青年科学家奖、ieee grss 早期职业成就奖(early career award)。ieee高级会员,担任ieee tgrs、isprs jp&rs、remote sensing等期刊副主编/编委。
工作经历
2022.04-至今 中国科学院空天信息创新研究院 研究员
2020.01-2021.12 法国格勒诺布尔阿尔卑斯大学-傅里叶实验室客 座研究员
2019.09-2021.10 德国宇航中心研究员&光谱视觉课题组 组长
2015.09-2019.08 德国宇航中心 副研究员
多模态遥感大数据
人工智能
目标检测/识别
数据智能融合
高光谱遥感图像分析
(1)国家优秀青年基金(海外)项目 项目负责人 国家任务 2022.01—2024.12
(2)科技部国家重点研发项目 课题负责人 国家任务 2022.12—2026.12
(3)国家自然科学基金委员会重点专项项目 课题负责人 国家任务 2023.01—2026.12
(4)国家自然科学基金委员会面上项目 项目负责人 国家任务 2023.01—2026.12
(1)学术论文
[1]hong, d., gao, l., yao, j., zhang, b., plaza, a. and chanussot, j., 2021. graph convolutional networks for hyperspectral image classification. ieee transactions on geoscience and remote sensing, 59(7), pp.5966-5978. (sci)
[2]hong, d., gao, l., yokoya, n., yao, j., chanussot, j., du, q. and zhang, b., 2021. more diverse means better: multimodal deep learning meets remote-sensing imagery classification. ieee transactions on geoscience and remote sensing, 59(5), pp.4340-4354. (sci)
[3]hong, d., yokoya, n., chanussot, j. and zhu, x.x., 2019. an augmented linear mixing model to address spectral variability for hyperspectral unmixing. ieee transactions on image processing, 28(4), pp.1923-1938. (sci)
[4]hong, d., hu, j., yao, j., chanussot, j. and zhu, x.x., 2021. multimodal remote sensing benchmark datasets for land cover classification with a shared and specific feature learning model. isprs journal of photogrammetry and remote sensing, 178, pp.68-80. (sci)
[5]hong, d., he, w., yokoya, n., yao, j., gao, l., zhang, l., chanussot, j. and zhu, x., 2021. interpretable hyperspectral artificial intelligence: when nonconvex modeling meets hyperspectral remote sensing. ieee geoscience and remote sensing magazine, 9(2), pp.52-87. (sci)
[6]hong, d., yokoya, n., chanussot, j., xu, j. and zhu, x.x., 2021. joint and progressive subspace analysis (jpsa) with spatial–spectral manifold alignment for semisupervised hyperspectral dimensionality reduction. ieee transactions on cybernetics, 51(7), pp.3602-3615. (sci)
[7]hong, d., gao, l., yao, j., yokoya, n., chanussot, j., heiden, u. and zhang, b., 2022. endmember-guided unmixing network (egu-net): a general deep learning framework for self-supervised hyperspectral unmixing. ieee transactions on neural networks and learning systems, 33(11), pp.6518-6531. (sci)
[8]hong, d., yokoya, n., chanussot, j., xu, j. and zhu, x.x., 2019. learning to propagate labels on graphs: an iterative multitask regression framework for semi-supervised hyperspectral dimensionality reduction. isprs journal of photogrammetry and remote sensing, 158, pp.35-49. (sci)
[9]hong, d., yokoya, n., ge, n., chanussot, j. and zhu, x.x., 2019. learnable manifold alignment (lema): a semi-supervised cross-modality learning framework for land cover and land use classification. isprs journal of photogrammetry and remote sensing, 147, pp.193-205. (sci)
[10]hong, d., han, z., yao, j., gao, l., zhang, b., plaza, a. and chanussot, j., 2022. spectralformer: rethinking hyperspectral image classification with transformers. ieee transactions on geoscience and remote sensing, 60, pp.1-15. (sci)
(2)专著(参与编写)
[1]deep learning for the earth sciences: a comprehensive approach to remote sensing, climate science and geosciences,john wiley & sons出版社,2021
[2]compressed sensing in information processing,springer nature出版社,2022
(1)ieee grss early career award (早期职业成就奖),2022
(2)科睿唯安2022年度全球“高被引科学家”,2022 (3)国家优秀自费留学生奖学金,2022 (4)全球前2%顶尖科学家榜单,2022 (3)ieee jstars best reviewer award,2022 (6)ieee tgrs best reviewer award,2022 (7)remote sensing young investigator award(青年科学家奖),2022 (8)ieee tgrs best reviewer award,2021
(4)全球前2%顶尖科学家榜单,2021 (10)第11届国际高光谱图像与信息处理研讨会(whispers)杰出论文奖(jose bioucas dias奖,唯一),2021 (11)慕尼黑工业大学最佳博士论文奖,2019
研究队伍